Glacier Collapse Devastates Swiss Village of Blatten

Researchers at CERN's Large Hadron Collider have made a groundbreaking discovery of a particle named antihyperhelium-4, the heaviest antimatter particle identified to date. This finding, reported in a preprint on arXiv, could potentially illuminate the longstanding mystery of why our universe is predominantly composed of matter, despite theories suggesting an equal creation of matter and antimatter during the Big Bang.
The discovery was made by the A Large Ion Collider Experiment (ALICE), which specializes in heavy-ion physics. The experiments recreate conditions akin to those present just one millionth of a second after the Big Bang. According to the researchers, antihyperhelium-4 consists of protons and neutrons along with hyperons containing “strange” quarks, making it fundamentally different from ordinary helium. Since hypernuclei decay rapidly, locating these particles poses significant challenges; only two other antihypernuclei have been identified in recent history.
Qiu Hao, a collaborator with STAR at Brookhaven National Laboratory, emphasized the importance of creating and studying antimatter to unravel the mystery of matter-antimatter asymmetry in the universe.